El estudio consistió en el desarrollo de un modelo que permite predecir la configuración más eficiente y el menor consumo de combustible en los sistemas de dragado accionados por motores de combustión interna Diésel. Este tipo de modelos facilitará a los operadores obtener la mejor combinación para una mayor eficiencia energética en el proceso, tomando en consideración las limitaciones asociadas al mismo, bajo las respectivas condiciones de operación. Las simulaciones multifases CFD se llevaron a cabo utilizando el software OpenFOAM®, a través del cual se obtuvieron resultados con desviaciones menores al 5%, comparados con la validación experimental.
ABSTRACT: In the dredging industry, centrifugal pumps are the cornerstone of performance and productivity in operation. However, these characteristics are affected because the dredge operators are unaware of the response of the pump efficiency under operating conditions, as well as the fuel consumed by the engine that drives it. Experimental tests are discarded as a solution to this situation, due to its high cost and time requirements, presenting an opportunity for numerical analysis through compitational fluid dynamics (CFD). In this paper, a Eulerian model based on the kinetic theory of granular flux is used to represent the multiphasic phenomenon. The turbulent standard k-e model, along with a standard wall treatment with a dispersed approach was used to describe he turbulent flow. Experimental data obtained from operation includes depth of the fluid. The comparison between the data acquired and the CFD results allowed to correlate the operating conditions with the fuel consumption of the engine and the efficiency of the pump additionally. The prediction capacity of this correlation was experimentally validated, obtaining deviations lower than 5%.
A continuación puede acceder a la versión completa del producto de investigación: IREME_VOL_13_N_1. El artículo original se encuentra publicado en la revista International Review of Mechanical Engineering (IREME) Vol. 13 No.1 (2019): Praise Worthy Prize.